首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13419篇
  免费   624篇
  国内免费   4814篇
安全科学   906篇
废物处理   842篇
环保管理   1012篇
综合类   7576篇
基础理论   2204篇
环境理论   6篇
污染及防治   4650篇
评价与监测   550篇
社会与环境   520篇
灾害及防治   591篇
  2024年   3篇
  2023年   226篇
  2022年   658篇
  2021年   553篇
  2020年   429篇
  2019年   426篇
  2018年   542篇
  2017年   625篇
  2016年   572篇
  2015年   764篇
  2014年   1078篇
  2013年   1375篇
  2012年   1110篇
  2011年   1269篇
  2010年   913篇
  2009年   897篇
  2008年   949篇
  2007年   749篇
  2006年   694篇
  2005年   517篇
  2004年   376篇
  2003年   473篇
  2002年   427篇
  2001年   354篇
  2000年   357篇
  1999年   424篇
  1998年   344篇
  1997年   325篇
  1996年   314篇
  1995年   269篇
  1994年   186篇
  1993年   167篇
  1992年   123篇
  1991年   102篇
  1990年   66篇
  1989年   61篇
  1988年   50篇
  1987年   19篇
  1986年   25篇
  1985年   11篇
  1984年   11篇
  1983年   10篇
  1982年   11篇
  1981年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
Environment, Development and Sustainability - Heavy metal pollution has attracted more attention due to the toxicity and migration characteristics, which has close relationship with soil...  相似文献   
52.
为探究pH值对亚硝酸盐氧化菌(NOB)活性动力学影响,本试验采用序批式活性污泥(SBR)反应器,以富含NOB的活性污泥为对象,基于Monod模型考察不同pH值对NOB活性动力学的影响并进行统计学分析.结果表明,Monod方程可较好地反映不同pH值条件下基质底物浓度对NOB比亚硝态氮氧化速率(SNiOR)的影响,且pH=7.0时动力学参数Ks为(6.167mg/L),rmax为[1.134g/(g·d)],此时NOB活性最好.利用钟形经验模型进行非线性回归拟合,最大比降解速率(rmax)随pH值的增大呈钟形变化,本试验NOB的最佳pH值为(6.9±0.1),其中rmax维持在ropt一半以上的pH值范围(ω)为(3.26±0.4).以亚硝酸盐氧化还原酶类基因(nxrA、nxrB)为引物,基于荧光定量PCR技术分析结果显示,在不同pH值条件下nxrA基因和nxrB基因拷贝数的变化趋势均与动力学参数(Ks、rmax)的规律一致,且nxrA和nxrB基因在系统的降解过程中起协同作用.  相似文献   
53.
To clarify the aerosol hygroscopic growth and optical properties of the Pearl River Delta(PRD)region,integrated observations were conducted in Heshan City of Guangdong Province from October 19 to November 17,2014.The concentrations and chemical compositions of PM_(2.5),aerosol optical properties and meteorological parameters were measured.The mean value of PM_(2.5) increased from less than 35(excellent) to 35-75 μg/m~3(good) and then to greater than 75 μg/m~3(pollution),corresponding to mean PM_(2.5) values of 24.9,51.2,and 93.3 μg/m~3,respectively.The aerosol scattering hygroscopic growth factor(f(RH = 80%)) values were 2.0,2.12,and 2.18 for the excellent,good,and pollution levels,respectively.The atmospheric extinction coefficient(σext)and the absorption coefficient of aerosols(σ_(ap)) increased,and the single scattering albedo(SSA)decreased from the excellent to the pollution levels.For different air mass sources,under excellent and good levels,the land air mass from northern Heshan had lower f(RH) and σ_(sp) values.In addition,the mixed aerosol from the sea and coastal cities had lower f(RH) and showed that the local sources of coastal cities have higher scattering characteristics in pollution periods.  相似文献   
54.
The performance of Ce-OMS-2 catalysts was improved by tuning the fill percentage in the hydrothermal synthesis process to increase the oxygen vacancy density. The Ce-OMS-2 samples were prepared with different fill percentages by means of a hydrothermal approach (i.e. 80%, 70%, 50% and 30%). Ce-OMS-2 with 80% fill percentage (Ce-OMS-2-80%) showed ozone conversion of 97%, and a lifetime experiment carried out for more than 20?days showed that the activity of the catalyst still remained satisfactorily high (91%). For Ce-OMS-2-80%, Mn ions in the framework as well as K ions in the tunnel sites were replaced by Ce4+, while for the others only Mn ions were replaced. O2-TPD and H2-TPR measurements proved that the Ce-OMS-2-80% catalyst possessed the greatest number of mobile surface oxygen species. XPS and XAFS showed that increasing the fill percentage can reduce the AOS of Mn and augment the amount of oxygen vacancies. The active sites, which accelerate the elimination of O3, can be enriched by increasing the oxygen vacancies. These findings indicate that increasing ozone removal can be achieved by tuning the fill percentage in the hydrothermal synthesis process.  相似文献   
55.
On-road driving emissions of six liquefied natural gas(LNG) and diesel semi-trailer towing vehicles(STTVs) which met China Emission Standard IV and V were tested using Portable Emission Measurement System(PEMS) in northern China.Emission characteristics of these vehicles under real driving conditions were analyzed and proved that on-road emissions of heavy-duty vehicles(HDVs) were underestimated in the past.There were large differences among LNG and diesel vehicles, which also existed between China V vehicles and China IV vehicles.Emission factors showed the highest level under real driving conditions, which probably be caused by frequent acceleration, deceleration, and start-stop.NOx emission factors ranged from 2.855 to 20.939 g/km based on distance-traveled and 6.719–90.557 g/kg based on fuel consumption during whole tests, which were much higher than previous researches on chassis dynamometer.It was inferred from tests that the fuel consumption rate of the test vehicles had a strong correlation with NOx emission, and the exhaust temperature also affected the efficiency of Selected Catalytic Reduction(SCR) aftertreatment system, thus changing the NOx emission greatly.THC emission factors of LNG vehicles were 2.012–10.636 g/km, which were much higher than that of diesel vehicles(0.029–0.185 g/km).Unburned CH_4 may be an important reason for this phenomenon.Further on-road emission tests, especially CH_4 emission test should be carried out in subsequent research.In addition, the Particulate Number(PN) emission factors of diesel vehicles were at a very high level during whole tests, and Diesel Particulate Filter(DPF)should be installed to reduce PN emission.  相似文献   
56.
Water-uptakes of pure sodium carbonate(Na_2CO_3),pure β-alanine and internally mixedβ-alanine/Na_2CO_3 aerosol particles with different mole ratios are first monitored using attenuated total reflectance Fourier transform infrared spectroscopy(ATR-FTIR) technique.For pure Na_2CO_3 aerosol particles,combining the absorptions at 877 and 1422 cm-1 with abrupt water loss shows the efflorescence relative humidity(ERH) of 62.9%–51.9%.Upon humidifying,solid Na_2CO_3 firstly absorbs water to from Na_2CO_3·H2 O crystal at 72.0% RH and then deliquesces at 84.5% RH(DRH).As for pure β-alanine particles,the crystallization takes place in the range of 42.4%–33.2% RH and becomes droplets at ~ 88.2% RH.When β-alanine is mixed with Na_2CO_3 at various mole ratios,it shows no efflorescence of Na_2CO_3 whenβ-alanine to Na_2CO_3 mole ratio(OIR) is 2:1.For 1:1 and 1:2 β-alanine/Na_2CO_3 aerosols,the ERHs of Na_2CO_3 are 51.8%–42.3% and 57.1%–42.3%,respectively.While β-alanine crystal appears from 62.7% RH for 2:1 and 59.4% RH for both 1:1 and 1:2 particles and lasts to driest state.On hydration,the DRH is 44.7%–75.2% for Na_2CO_3 with the OIR of 1:1 and 44.7%–69.0%for 1:2 mixture,and those of β-alanine are 74.8% for 2:1 mixture and 68.9% for two others.After the first dehumidification–humidification,all the water contents decrease despite of constituent fraction.And at ~ 92% RH,the remaining water contents are 92%,89% and 82%at ~ 92% RH,corresponding to OIR of 2:1,1:1 and 1:2 mixed system,respectively.  相似文献   
57.
Released Ag ions or/and Ag particles are believed to contribute to the cytotoxicity of Ag nanomaterials, and thus, the cytotoxicity and mechanism of Ag nanomaterials should be dynamic in water due to unfixed Ag particle:Ag+ ratios. Our recent research found that the cytotoxicity of PVP-Ag nanoparticles is attributable to Ag particles alone in 3 hr bioassays, and shifts to both Ag particles and released Ag+ in 48 hr bioassays. Herein, as a continued study, the cytotoxicity and accumulation of 50 and 100 nm Ag colloids in Escherichia coli were determined dynamically. The cytotoxicity and mechanisms of nano-Ag colloids are dynamic throughout exposure and are derived from both Ag ions and particles. Ag accumulation by E. coli is derived mainly from extracellular Ag particles during the initial 12 hr of exposure, and thereafter mainly from intracellular Ag ions. Fe3+ accelerates the oxidative dissolution of nano-Ag colloids, which results in decreasing amounts of Ag particles and particle-related toxicity. Na+ stabilizes nano-Ag colloids, thereby decreasing the bioavailability of Ag particles and particle-related toxicity. Humic acid (HA) binds Ag+ to form Ag+-HA, decreasing ion-related toxicity and binding to the E. coli surface, decreasing particle-related toxicity. HA in complex conditions showed a stronger relative contribution to toxicity and accumulation than Na+ or Fe3+. The results highlighted the cytotoxicity and mechanism of nano-Ag colloids are dynamic and affected by environmental factors, and therefore exposure duration and water chemistry should be seriously considered in environmental and health risk assessments.  相似文献   
58.
PM_(2.5) separator directly affects the accuracy of PM_(2.5) sampling.The specification testing and evaluation for PM_(2.5) separator is particularly important,especially under China's wide variation of terrain and climate.In this study,first a static test apparatus based on polydisperse aerosol was established and calibrated to evaluate the performance of the PM_(2.5) separators.A uniform mixing chamber was developed to make particles mix completely.The aerosol concentration relative standard deviations of three test points at the same horizontal chamber position were less than 0.57%,and the particle size distribution obeyed logarithmic normal distribution with an R~2 of 0.996.The flow rate deviation between the measurement and the set point flow rate agreed to within ± 1.0% in the range of -40 to 50℃.Secondly,the separation,flow and loading characteristics of three cyclone separators(VSCC-A,SCC-A and SCC112) were evaluated using this system.The results showed that the 50% cutoff sizes(D_(50)) of the three cyclones were 2.48,2.47 and 2.44 μm when worked at the manufacturer's recommended flow rates,respectively.The geometric standard deviation(GSD) of the capture efficiency of VSCCA was 1.23,showed a slightly sharper than SCC-A(GSD = 1.27),while the SCC112 did not meet the relevant indicator(GSD = 1.2 ± 0.1) with a GSD = 1.44.The flow rate and loading test had a great effect on D_(50),while the GSD remained almost the same as before.In addition,the maintenance frequency under different air pollution conditions of the cyclones was summarized according to the loading test.  相似文献   
59.
This study profiled the bacterial community variations of water from four water treatment systems, including coagulation, sedimentation, sand filtration, ozonation-biological activated carbon filtration (O3-BAC), disinfection, and the tap water after the distribution process in eastern China. The results showed that different water treatment processes affected the bacterial community structure in different ways. The traditional treatment processes, including coagulation, sedimentation and sand filtration, reduced the total bacterial count, while they had little effect on the bacterial community structure in the treated water (before disinfection). Compared to the traditional treatment process, O3-BAC reduced the relative abundance of Sphingomonas in the finished water. In addition, ozonation may play a role in reducing the relative abundance of Mycobacterium. NaClO and ClO2 had different effects on the bacterial community in the finished water. The relative abundance of some bacteria (e.g. Flavobacterium, Phreatobacter and Porphyrobacter) increased in the finished water after ClO2 disinfection. The relative abundance of Mycobacterium and Legionella, which have been widely reported as waterborne opportunistic pathogens, increased after NaClO disinfection. In addition, some microorganisms proliferated and grew in the distribution system, which could lead to turbidity increases in the tap water. Compared to those in the finished water, the relative abundance of Sphingomonas, Hyphomicrobium, Phreatobacter, Rheinheimera, Pseudomonas and Acinetobacter increased in the tap water disinfected with NaClO, while the relative abundance of Mycobacterium increased in the tap water disinfected with ClO2. Overall, this study provided the detailed variation in the bacterial community in the drinking water system.  相似文献   
60.
Inhaled atmospheric fine particulate matter(PM_(2.5)) includes soluble and insoluble fractions,and each fraction can interact with cells and cause adverse effects.PM_(2.5) samples were collected in Jinan,China,and the soluble and insoluble fractions were separated.According to physiochemical characterization,the soluble fraction mainly contains watersoluble ions and organic acids,and the insoluble fraction mainly contains kaolinite,calcium carbonate and some organic carbon.The interaction between PM_(2.5) and model cell membranes was examined with a quartz crystal microbalance with dissipation(QCM-D) to quantify PM_(2.5) attachment on membranes and membrane disruption.The cytotoxicity of the total PM_(2.5) and the soluble and insoluble fractions,was investigated.Negatively charged PM_(2.5) can adhere to the positively charged membranes and disrupt them.PM_(2.5)also adheres to negatively charged membranes but does not cause membrane rupture.Therefore,electrostatic repulsion does not prevent PM_(2.5) attachment,but electrostatic attraction induces remarkable membrane rupture.The human lung epithelial cell line A549 was used for cytotoxicity assessment.The detected membrane leakage,cellular swelling and blebbing indicated a cell necrosis process.Moreover,the insoluble PM_(2.5) fraction caused a higher cell mortality and more serious cell membrane damage than the soluble fraction.The levels of reactive oxygen species(ROS) enhanced by the two fractions were not significantly different.The findings provide more information to better understand the mechanism of PM_(2.5) cytotoxicity and the effect of PM_(2.5) solubility on cytotoxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号